乘法分配律教学反思(15篇)
身为一名刚到岗的人民教师,课堂教学是重要的任务之一,写教学反思能总结教学过程中的很多讲课技巧,写教学反思需要注意哪些格式呢?以下是小编收集整理的乘法分配律教学反思,希望对大家有所帮助。
乘法分配律教学反思1这是我对自己上的有关乘法分配律的一课的教学反思,我让她们每次上完课都写一写反思,我想这样她才能真正从实习中有所收获。她的教学反思如下:
乘法分配律不仅是本章的难点也是四年级学习的重点和难点。它是学生学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的,是一节比较抽象的概念课,它的重点是让学生感知乘法分配律,知道什么是乘法分配律,难点是理解乘法分配律的意义,并会用乘法分配律进行一些简便运算。因此在教学过程中,怎样引导学生成为重中之重。我的教学思路大体为以下几点:
第一:在开始的课上,与学生一起回忆了乘法交换律与乘法结合律,做到温故而知新,不至于学生了解乘法分配律时与前两个运算定律相混。
第二:通过询问学生关于校服的问题引入需要解决的问题,在此环节中,我询问了学生们现在的校服是什么样子的,接着呈现了,事先准备好的班级同学穿校服的照片,这样,学生们就会体会到,这堂课与他们息息相关,然后我又问他们想拥有什么样的校服,接着又呈现了搜索到的几张关于校服的个性图片,于是探讨乘法分配律之旅,轰轰烈烈的开始了。
第二:教材中此出问题的主题图是关于植树的问题,但考虑到学生的理解能力有限,我将题目改成校服上衣价钱,校服裤子价钱与总价钱的问题,这样一来,更贴近学生生活。
第三:让学生列示计算的同时请两名同学上黑板做题,这样就节省了一些时间,但仍有不足。
不足及改进:
第一:学生在黑板上书写很是不规范,占去了黑板的很大空间,导致我在询问其他同学答题步骤及板书时无处可写,黑板书写有些许乱。
第二:在两名同学书写完下去之后,我接着就询问了其他同学的不同做法,于是学生只要有一点计算步骤不同的就举手回答,导致回答不完,但各种方法又相似,黑板罗列太多,学生分不清主次。我想如果在来那名同学书写完后,先不让他们下去,而是留在讲台上解释自己的先算什么后算什么,这样下面的.同学也就晓得自己的解题步骤到底属于哪一种,从而也可以节省部分时间。
第三:在解释乘法分配律意义方面不清楚,几种理解方法过于着急地解释给学生,导致学生听得的迷迷糊糊。在这方面,我应该更加清晰地理清自己的思路,该怎样循序渐进的向学生解释这种运算方法的意义。如先理解在题意中先算什么后算什么,再脱离情境观察数的特点,先算的谁和谁的积又算谁和谁的积,最后再怎样,自然而然,学生会发现有共同的数,进而引导理解30个45加上20个45等于50个45。
总之乘法分配律确实并不是很好理解,再加上老师不太能抓住重点,虽然课前我一再给她讲这地方那地方如何引导和如何讲,但是她还是被学生给带偏了,讲解的不透彻,再加上不会维持学生听课,所以学生掌握的不是很好。事后我又讲了练习课加以巩固,但是先入为主,并且也不像例题讲的那么详细,还是有几个孩子比较糊涂。所以单元测试中乘法分配律出错最多。
乘法分配律教学反思2乘法分配律是所有运算律中形式变化较为复杂,且跨越加法和乘法两级运算的定律,对学生的记忆、理解与运用都提出了较高的要求。教学中,教师需要在探析错因、读法纠正、变式训练上做足功夫,巧制策略。学生在正式接触乘法分配律之前,学生陆续掌握了加法和乘法的交换律和结合律,并能熟练使用这些定律进行简单的运算。照常理推测,同为等式恒等变换,借助已有的经验,学生对于乘法分配律应该很容易接受。然而,实际情况却不容乐观,学生在运用乘法分配律进行简算时出错率较高。为此,教师应巧制策略,帮助学生克服困难。
如何帮学生建立数学模型,展现乘法分配律的性质,是教学的根本,也是学生理解的前提。要让学生对乘法分配律有深刻准确的记忆和理解,用最符合学生心理特征的方式进行阐述才是上策。
为此,我改进了教学方式——切换读法,化难为易。
[例题]植树节那天,学校组织二(1)班的.学生植树,上午植树4小时,下午植树2小时,平均每小时植树25棵,问:植树节那天,学生一共植树多少棵?
步骤1:学生列式多为“25×4+25×2”和“25×(4+2)”两种式子。
步骤2:简述各算式的算理:25×4+25×2表示先分别求出半天的植树数,再求一天的植树总数;25×(4+2)表示先求植树总时长,再求植树总数。
步骤3:引导学生从数字计算的角度去理解:25×4+25×2表示两个积的和,25×(4+2)表示两个数的积。接着用一句话揭示它们的共同点:4个25加上2个25等于6个25,6就是4与2的和。以实例为对象,换成通俗的说法,完美呈现了算式的内涵,深化了学生的理解。
步骤4:针对代数式表示的乘法分配律“a×c+b×c=(a+b)×c”,让学生尝试用通俗方式解读,即a个c加上b个c等于(a+b)个c。
实践证明,渗入思维的读法比机械复读教学效果要好。
乘法分配律教学反思31、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵
教学中通过解决“济青高速公路全长多少千米”这一问题,结合具体的生活情景,得到了(110+90)x2=110x2+90x2”这一结果,教学中只注重了等式的外形特点,即两个数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。这时教师可提问“为什么两个算式是相等的?”这里不仅要从解题思路的角度理解两个算式是相等的,还要从乘法意义的'角度理解,即左边表示200个2,右边也表示200个2。所以(110+90)x2=110x2+90x2。
2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习
乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算是个有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?
3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解
如:计算125×88;101×89你能用几种方法?125×88①竖式计算;②125×8×11;③125×(80+8)等。101×89①竖式计算;②(100+1)×89;③101×(80+9)等。对不同的解题方法,引导学生进 ……此处隐藏8522个字……p>
三、在本节课的练习设计上,我力求有针对性、有坡度的知识延伸。
1、在完成课本36页做一做时,对应这3道判断题,
(1)、判断56×(19+28)=56×19+28,让学生感知到乘法分配律要分给括号里的每一个数,强调乘法分配律的“公平性”。
(2)、判断32×(7×3)=32×7+32×3,让学生注意到乘法结合律和乘法分配律的区别:通过对运算定律意义的描述,和算式的特点,提炼出最简洁的区分方法:乘法结合律是连乘情况下的,乘法分配律除了乘法还有加法(后继教学还会出现减法),容易使我们混淆的原因是,它们都是乘法的运算定律都有乘法出现,更关键是它们都出现了小括号。
(3)、判断64×64+36×64,借助64个64和36个64,一共是64+36=100个64,让学生理解乘法分配律逆向使用,在一些情况下,计算会变得十分简便。
2、在完成较简单的课本36页做一做后,进行一些扩展型的练习:
通过(250—25)×4,让学生感受到,乘法分配律除也可以两个数的差与一个数相乘。对于分配之后,再把两个积相减。同时复习强调我们熟悉的5道重要算式:5×2、25×4、125×8、125×4、25×8
由于本节课的知识运用的难度较大,学生对乘法分配律可以基本掌握,但是对于其万般变化,还是有点力不从心,而该运算定律对学生后继学习,尤其是小数和分数计算时有一定影响,所以还需要学生在本节课后进行深入的学习,教师也需要针对乘法分配律的每一种题型,结合学生的掌握情况进行更系统深入的讲解。
乘法分配律教学反思14《乘法分配律》是四年级第七单元的内容,在此之前,学生上个学期已经学过了加法交换律和结合律、乘法交换律和结合律,同时这个学期第四单元混合运算中也运用了学过的运算律进行简便的计算,上课之前,我以为学生对这一部分的知识并不陌生,所以就简单地设计了复习,回顾学过的运算律,再让学生发现运算律在简便计算中的运用,接着就出示了上课的例题,让学生从例题中寻找乘法分配律的影子,再通过举例,比较发现乘法分配律并用字母表示出来,基本完成本节课的新授。通过巩固练习让学生认识乘法分配律在计算和实际生活问题中的运用。上课之前,我以为学生会跟着我的思路走,会很顺利的上完整节课。但上完课,我发现我自己的课堂出现了很多的问题,总结了一下,我感觉自己在很多方面做得很不到位。
开始的时候,学生回顾运算律的时候出现了小的问题,让我有一点束手无策,导致后面的复习题忘记出示,课堂环节被遗漏。
教学新课的时候,学生的列式不是我想要的算式的形式,我就直接写出我想要的算式的形式了,其实这个时候可以用乘法交换律变成我想要的形式,同时,我也在想,知识应该是灵活的,我也应该写出学生说出的那种形式,因为这是学生自己列出来的式子,他自己肯定能理解的,但课上我的做法就有点急于求成,有点生搬硬套了。
小组讨论的时候也出现了很多的问题,本来我认为这节课学生应该很快地发现等式两边的特点的,也能很快地说出它们的共同点的,但上课的时候,小组讨论中我发现,学生根本不知道该如何发现这些算式的共同点,即使有些同学发现了一些特点也不知道该如何表达出来,课后反思了,我发现自己的问题设计的不好,学生不能明白地知道该从哪里入手,是比较数字上面的关系,还是观察式子上的关系,还是看符号上的关系,所以导致学生不知道该怎么说,还有一点重要的原因是我在讨论之前比较例题中的`等式的时候没有清楚地讲到让学生观察等式的运算顺序,导致学生不会说。另一方面,对于将等式抽象成一个字母表示的式子本身不是什么难事,但还要讲出抽象的过程,对于四年级的学生有一点难度,学生能感觉出来就是这样写,但说的有理有据真的很困难。所以在我们的教学中,我们要考虑到学生的认知水平,让学生说出他应该有的想法就很好了,以后的教学中我们应尽量让学生进行小组讨论说出自己的想法,同时也要注意小组讨论的程度问题,提出适合学生的、有效的问题是很有必要的。
练习中,要更多地关注学生的能力发展,要让学生说出自己的想法,把每一题的设计意图理解清楚,根据题意正确地进行计算,并掌握做题的方法。
一节课下来发现自己出现了很多很多的问题,希望在以后的教学中能慢慢地减少这样问题的出现。
乘法分配律教学反思15《乘法分配律》是四年级数学下册第三单元中的一节教学内容,一直以来的教学中,我认为这节课的教学都是一个教学难点,学生很难学好。
我认为其中的不易可以从三个方面来说:其一,例题仅仅是分配律的一点知识,在课下的练习题中还存在不少乘法分配律类型的题(不过,这好像也是新课改后教材的表现)。如果让学生仅仅学会例题,可以说,你也只是学到了乘法分配律的皮毛;其二,乘法分配律只是一种简单的计算方法的应用,所有用乘法分配律计算的试题,用一般的方法完全都可以计算出来,也就是说,如果不用乘法分配律,学生完全可以计算出结果来,只不过不能符合简便计算的要求罢了,问题是学生已学过一般的方法,学生在计算时想的最多的还是一般的计算方法;其三,本节课的教学灵活性比较大,并没有死板板的模式可以来死记硬背,就是学生记住了定律,在运用时,运用错了,也是很大的`麻烦,从题目的分析到应用定律都需要学生的认真分析及灵活运用。
针对以上自己分析可能出现的问题,,确定从以下两个方面时行教学:
第一,以书本为依托,学好基础知识。
有一句话叫做“万变不离其宗”。虽然课下还有多种类型题,但它们都与书上的例题有着亲密的联系,所以教学还是要以书本为依托。在教学中,我引导生通过观察两个不同的算式,得出乘法分配律的用字母表示数:a×b+a×c=a×(b+c),在引导学生经过练习之后,我还强调学生,要做到:a×(b+c)=a×b+a×c。用我自己的话说,就是:能走出去,还要走回来。再次经过练习,在学生掌握差不多时,简单变换一下样式:(a+b)×c=a×c+b×c,走回来:a×c+b×c=(a+b)×c。如此以来,学生算是对乘法分配律有了个初步的认识,知道是怎么回事,具体的运用还差很远,因为还有很多的类型学生并不知道。于是我就在第二节课进行了第二个方面的教学。
第二,以练习为载体,系统巩固知识。
针对乘法分配律还有多种类型,例题中也没讲到的情况,我上网查资料,加上并时的一些认识,把乘法分配律分为五类,并对每类进行简单的分析提示,附以相应的练习题印发给学生,让学生进行练习。
类型一:(a+b)×c a×(b-c)
例:A (40+8)×25 B 15×(40-8)
类型二:a×b+a×c a×b-a×c
例:A 36×34+36×66 B 325×113-325×13
类型三:100+1或80+1
例:A 78×102 B 125×81
类型四:100-1或40-1
例:A 45×98 B 25×39
类型五:+1或-1
例:A 83+83×99 B 91×31-91